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Section S1: Simulated datasets
Description of simulation analysis, from generating synthetic multi-omics data to applying various
integrative classification approaches.

Simulated datasets

Figure. Simulated multi-omics data. Each
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Three datasets were simulated each with 200 observations (n) and 260 variables (p). The 200
observations were split equally into two groups (G1 and G2), whereas the 260 variables were
generated by varying the covariance (cov(Xl-,Xj) = [0,5,10,15], where i # j, between datasets
and fold-change (A= g, — ug1 = [0,1,2]) between G1 and G2: 30 correlated-discriminatory
(corDis) variables, 30 uncorrelated-discriminatory (unCorDis) variables, 100 correlated-
nondiscriminatory ~ (corNonDis)  variables, and 100 uncorrelated-nondiscriminatory
(unCorNonDis) variables were simulated (Figure left). The resulting dataset was of the form:

_ corDis uncCorDis corNonDis unCorNonDis -
X; = [ XrorPs | Xj | X; | X} ] +E;, wherej=1,2,3

Correlated and discriminatory variables, X]-C"TDiS (200 samples x 30 variables per dataset j)

The matrix containing correlated and discriminatory variables, X]-C‘”D"S was generated using the
following model:

XForPis = yforPiswt where |lwll = 1,j = 1,2,3

where the loadings, w1, w2, and ws were vectors of length 30, and the elements were drawn from
a uniform distribution in the interval of [-0.3, 0.2] U [0.2, 0.3]. For G1 (G2), the outer components
uborbis y5orbis 44S0rDis were vectors of length 100 drawn from a multivariate normal distribution
with a mean value of —A/2 (A/2), where the grid values of 0, 1, 2 were used for A. The covariance

between pairs of components, cov(uf°™*, uf°"P) was set to 1 for all i, j=1,2,3.



Uncorrelated and discriminatory variables, X}‘”C"rms (200 samples x 30 variables per dataset j)
The matrix containing uncorrelated and discriminatory variables, X}‘"C"”’“ was generated using
the following model:

XJynCorDis — u}LnCorDisW]l_t’ where ||W|| — 1’]- =123

where the loadings, w1, w2, and ws were vectors of length 30, and the elements were drawn from
a uniform distribution in the interval of [-0.3, 0.2] U [0.2, 0.3]. For G1 (G2), the outer components
uyncorDis g uncorDis g unCorDis \yere vectors of length 100 drawn from a multivariate normal
distribution with a mean value of —A/2 (A/2), where the grid values of 0, 1, 2 were used for A.
The covariance between pairs of components, cov(utmcorPis, u}‘”c"”’is) was set to O when i # j
and 1 wheni =j.

Correlated and nondiscriminatory variables, Xj“’”"o"ms (200 samples x 100 variables per dataset
)
The matrix containing correlated and nondiscriminatory variables, X F°"™"°"?s was generated using
the following model:

NonDis __ NonDi t — P
xpornonbis — 1:l}¢0r P wi, where [w]l = 1,j = 1,2,3
where the loadings, w1, w2z, and ws were vectors of length 100, and the elements were drawn from
a uniform distribution in the interval of [-0.3, 0.2] U [0.2, 0.3]. The outer components u§°™NVonbis,
ugerNonDis q corNonDis \yere vectors of length 200 drawn from a multivariate normal distribution
with a mean value of 0. The covariance between pairs of components, cov(ug®™VonPs yforNonbis)
was set to 1 for all i, j=1,2,3.

Uncorrelated and nondiscriminatory variables, X}‘”C"”"O”ms (200 samples x 100 variables per
dataset j)

The matrix containing uncorrelated and discriminatory variables, X}‘”C"”"‘mDiS was generated
using the following model:

X]ynCorNonDis — u}mCorNonDiswjt, where ||W|| — 1’]- — 1,2,3

where the loadings, w1, w2z, and ws were vectors of length 100, and the elements were drawn from
a uniform distribution in the interval of [-0.3, 0.2] u [0.2, 0.3]. The outer components
yyncorNonDis gunCorNonDis g unCorNonDis \yere vectors of length 200 drawn from a multivariate
normal distribution with a mean value of 0. The covariance between pairs of components,
cov(uyneorPis ncorbisy was set to 0 when i # j and 1 when i = j.

The residual matrix, Ej is a 200 x 260 residual matrix where each element is drawn from a normal
distribution with zero mean and variance equal to 0.2, 0.5, or 1.

Simulation analysis

Holding covariance constant at 1 (Figure 1 in main manuscript)

Using a fold-change grid of [0, 1, 2] and noise grid of [0.2, 0.5, 1], sets of three datasets were
simulated for each fold-change and noise combination. Then a DIABLO model was generated
using either the full or null design (DIABLO_full and DIABLO_null). One component was



retained in the DIABLO model, selecting 60 variables from each dataset for a total of 180 variables
(across all datasets). In addition, other integrative schemes such as concatenation and ensemble-
based classifiers were also tested using the sPLSDA classifier. For the concatenation-based
scheme, all datasets were concatenated into one matrix containing 3x260=880 variables and
SPLSDA was applied, retaining 1 component and 90 variables. For the ensemble-based scheme, a
SPLSDA classifier was applied to each dataset separately retaining one component and 30
variables per dataset. The consensus predictions were determined using a majority vote scheme.
A 10-fold cross-validation averaged over 20 simulations was used to evaluate the performance of
each method/scheme and the number of each type of variable selected in each model was recorded.

Holding noise constant at 0.5 (Supplementary Figure S2 below)

Using a fold-change grid of [0.5, 1, 2, 4] and a covariance grid of [0, 5, 10, 15], sets of three
datasets were simulated for each fold-change and covariance combination. For each combination,
a DIABLO model with either the full or null design were generated, and the error rate was
evaluated using a 10-fold cross-validation. This procedure was repeated 20 times and an average
error rate for determined. For Supplementary Figures S2 A-B, the DIABLO models consisted of
1 component, retaining 60 variables per component per dataset (180 variables in total) whereas for
Supplementary Figures S2 C-D, the DIABLO models consisted of 2 components, retaining 30
variables per component per dataset (180 variables in total).

Section S2: Real world datasets.

Details regarding the multi-omics data used for the benchmarking experiments and case studies
(breast cancer and asthma).

Benchmarking cancer datasets

All cancer (colon, glioblastoma, kidney and lung) datasets used for the benchmarking analyses
were obtained from http://compbio.cs.toronto.edu/SNF/SNF/Software.html (Wang et al., 2014).
For the mRNA datasets, all transcripts with the same gene symbol were averaged.

Breast cancer multi-omics study

Datasets accession: The level 3 TCGA data (version 2015 11 01) were retrieved from
firebrowse.org hosted by the Broad Institute. The clinical data file (Merge_Clinical) was
downloaded from the Primary tab of the BRCA Clinical Archives. The mRNA RSEM normalized
dataset (illuminahiseq_rnaseqv2-RSEM _genes_normalized) was downloaded from the Primary
tab of the BRCA mRNASeq Archives. The miRNA datasets (illuminahiseq_mirnaseq-
miR_gene_expression and illuminaga_mirnaseg-miR_gene_expression) were downloaded from
the Primary tab of the BRCA miRSeq Archives. The reverse phase protein array dataset
(mda_rppa_core-protein_normalization) was downloaded from the Primary tab of the BRCA
RPPA Archives. The beta values for the methylation datasets (humanmethylation27-
within_bioassay data_set function and humanmethylation450-
within_bioassay_data_set_function MD5) were downloaded from the Primary tab of the BRCA
Methylation Archives.

Data processing: Clinical data were present for 1,098 subjects for 3,703 variables. 29 unannotated
transcripts were removed from the mRNA dataset composed resulting in 20,502 genes x 1212
samples. Two transcripts corresponded to SLC35E2, therefore one of the transcripts was re-


http://compbio.cs.toronto.edu/SNF/SNF/Software.html

labelled SLC35E2.rep. The miRNA datasets (1,046 miRNA x 1190 samples) was derived using
two different Illuminatechnologies, the Illumina Genome Analyzer (341 samples) and the Illumina
HiSeq (849 samples). The read counts instead of the reads_per_million_miRNA_mapped were
used. The proteomics dataset obtained using a reverse phase protein array consisted of 142 proteins
for 410 samples. The methylation data was derived from two different platforms, the Illumina
Methylation 27 (27,578 CpG probes x 343 subjects) and the Illumina 450K (485,577 CpG probes
X 885 subjects). There were 25,978 CpG probes in common between the platforms. The PAMS50
labels for 1,182 samples were obtained from the TCGA staff. All datasets were restricted to
samples coming from the primary solid tumor (sample type code 01) and to the first vial (vial code
A).

Normalization and pre-filtering: The count data for the mRNA dataset, Xcounts Was normalized to
log2-counts per million (logCPM), Xnorm, similar to limma voom (Law et al., 2014):
( (Xcounts +05)T \
‘X'norm = IOQZ . . 6

L(hb.szze+1)*10
After library size (lib.size = total number of reads per sample) normalization, genes with counts
less than 0 in more than 70% of samples were removed. The PAM50 genes were also removed
from the mRNA dataset prior to analyses. Similarly, the miRNA count data was normalized to
logCPM and miRNA transcripts with counts less than 0 in more than 70% of the samples were
also removed.

Asthma multi-omics study

Datasets accession: Paired blood samples were obtained from 14 asthmatic individuals undergoing
allergen inhalation challenge as previously described (Singh et al., 2012). Cell counts were
obtained from a hematolyzer (percentage of Neutrophils, Lymphocytes, Monocytes, Eosinophils
and Basophils) and DNA methylation analysis (percentage of T regulatory cells, T cells, B cells
and Th17 cells). Gene expression profiling was performed using Affymetrix Human Gene 1.0 ST
(GSE40240). Metabolite profiling was performed by Metabolon Inc. (Durham, North Carolina,
USA). All asthma data have been published as part of previous studies (Singh et al., 2013, 2014).

Normalization: Microarray data was normalized using Robust MultiArray Average (RMA),
consisting of background correction, quantile normalization and probe summarization using
median polish. Preprocessing of mass spectrometry data including data extraction, peak-
identification and data preprocessing for quality control and compound identification was
performed by Metabolon Inc. (Durham, North Carolina, USA).

Section S3: Description of methods used for the benchmarking

experiments.

Parameters settings used for the various integrative approaches applied to the benchmarking cancer
datasets.



Description of methods used for the benchmarking experiments

For the purposes of this study, only component-based methods that integrated multiple datasets
and perform variable selection were considered. Since tuning the number of variables to retain in
each model would result in biomarker panels with different numbers of variables, for the purposes
of this study all variables were retained in each model. The features were instead ranked based on
their absolute value of their loadings (importance) and 60 variables were selected from each omic
type, resulting in multi-omic biomarker panels with 180 variables (60 mMRNAs, 60 miRNAs and
60 CpGs). Equal numbers of variables allowed for a fair comparison in the gene set enrichment

analysis.

| Parameter settings

Supervised

DIABLO_null

ncomp = 2 (# of components)
keepX = all variables were retained from each omics dataset

0 0O
design=| 0 0 O
0 0O

default parameters were used for the other arguments:
scheme="horst",

mode="regression",

scale = TRUE,

init = "svd",

tol = 1e-086,

max.iter = 100

DIABLO_full

ncomp = 2 (# of components)

keepX = all variables were retained from each omics dataset
011

design=| 1 0 1
1 10

default parameters were used for the other arguments:
scheme="horst",
mode="regression",

scale = TRUE,
init = "svd",
tol = 1e-06,

max.iter = 100

Concatenation-sPLSDA

ncomp = 2 (# of components)
keepX = all variables were retained from each omics dataset

default parameters were used for the other arguments:
mode = "regression”




scale = TRUE,
tol = 1e-06,
max.iter = 100

Ensemble_sPLSDA

ncomp = 2 (# of components)
keepX = all variables were retained from each omics dataset

default parameters were used for the other arguments:
mode = "regression”

scale = TRUE,

tol = 1e-06,

max.iter = 100

Unsupervised

SGCCA (Tenenhaus et
al., 2014)

ncomp = 2 (# of components)
keepX = all variables were retained from each omics dataset

0 11
design=| 1 0 1
110

default parameters were used for the other arguments:
scheme = "horst",

mode="canonical",

scale = TRUE,

init = "svd.single",

tol = .Machine$double.eps,

max.iter=1000,

JIVE*(Lock et al., 2013)

default parameter settings from the jive() from the r.jive R-package

were used:
1. scale = TRUE, center = TRUE

2. method = “perm”

SPCA parameters:

ncomp = 2 (# of components)

keepX = rep(ncol(X),ncomp)(all variables were retained from each
omics dataset

default parameters were used for the other arguments:
center = TRUE

scale = TRUE,

max.iter = 500,

tol = 1e-06

MOFA (Argelaguet et
al., 2018)

factors=2 (# of components)

default parameter settings recommended by MOFA were used:
1. likelihoods=( gaussian gaussian gaussian )

2. Convergence criterion (tolerance=0.01, nostop=0)




3. Training components (startDrop=1 # initial iteration to start
shutting down factors, freqDrop=1 # frequency of checking for
shutting down factors, dropR2=0.00 # threshold on fraction of
variance explained)

4. hyperparameters for the feature-wise spike-and-slab sparsity
prior [learnTheta=( 1 1 1 ) # 1 means that sparsity is active
whereas 0 means the sparsity is inactivated; each element of
the vector corresponds to a view, initTheta=( 1 1 1) # initial
value of sparsity levels (1 corresponds to a dense model, 0.5
corresponds to factors ); each element of the vector
corresponds to a view, startSparsity=250 # initial iteration to
activate the spike and slab, we recommend this to be
significantly larger than 1]

Intercept was set to TRUE (learnintercept=1)
*since the variable selection functionality has not been added to JIVE R-function, sparse Principal
Component Analysis (SPCA) from the mixOmics R-package was applied to the joint variation
matrix obtained after applied JIVE to the multi-omics cancer datasets.

Section S4: Gene-set enrichment analyses

Significance of enrichment was determined using a hypergeometric test of the overlap between the
selected features (mapped to official HUGO gene symbols or official miRNA symbols) and the
various gene sets contained in the collections. The false discovery rate was computed for each
collection separately using the Benjamini Hochberg False Discovery Rate (Benjamini and
Hochberg, 1995) procedure. The number of gene sets with an FDR less than 5% were determined
and used as a metric to compared different multi-omics integrative methods.

In order to carry out the comparison, each feature set was mapped back to official HUGO
gene symbols. This was done as follows across the respective data types: mRNA, CpGs and
proteins (when present). The following collections were used as gene-sets for the enrichment
analysis (Subramanian et al., 2005): C1 - positional gene sets for each human chromosome and
cytogenetic band. C2 — curated gene sets (Pathway Interaction DB [PID], Biocarta [BIOCARTA],
Kyoto Encyclopedia of Genes and Genomes [KEGG], Reactome [REACTOME], and others), C3
- motif gene sets based on conserved cis-regulatory motifs from a comparative analysis of the
human, mouse, rat, and dog genomes. C4 — computational gene sets (from the Cancer Gene
Neighbourhoods [CGN] and Cancer Modules [CM] — citation available via the MolSigDB
(Liberzon et al., 2015). C5 - GO gene sets consist of genes annotated by the same GO terms. C6 —
ontologic gene sets (Gene sets represent signatures of cellular pathways which are often dis-
regulated in cancer). C7 - immunologic gene sets defined directly from microarray gene expression
data from immunologic studies. H - hallmark gene sets are coherently expressed signatures derived
by aggregating many MSigDB gene sets to represent well-defined biological states or processes.
& A. BTM - Blood Transcriptional Modules (Chaussabel et al., 2008). B. TISSUES - cell-specific
expression from Benita et al. (Benita et al., 2010).
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Section S5: Classification comparison between DIABLO, Concatenation
and Ensemble-based sPLSDA and Elastic net classifiers.

Each integrative classifier was tuned to determine the optimal multi-omics biomarker panel:

e DIABLO models: The tune function in the mixOmics R-library (v6.3.0) was used with a grid
of keepX (variables to select on each components) = [2, 5, 10, 15, 20] over 3 components
(ncomp=3) either with the null design or full design. A 5x5-fold cross-validation was applied
to determine the error rate for various grid value combinations.

a) When the null design was used (DIABLO_null), the model with the lowest error rate
(21%) consisted of 60 MRNA, 42 miRNA and 22 CpGs over 3 components.
b) When the full design was used (DIABLO_full), the model with the lowest error rate
(22%) consisted of 55 mMRNA, 17 miRNA and 17 CpGs over 3 components.
Applying DIABLO_null and DIABLO_full to the test data resulted in an error rate of 19% and
21% respectively.

e Concatenation_sPLSDA: All multi-omics data (MRNA, miRNA and CpGs) were concatenated
into one matrix. The tune function in the mixOmics R-library (v6.3.0) was used with a grid of
keepX (variables to select on each components) = [2, 5, 10, 15, 20] over 3 components
(ncomp=3). A 5x5-fold cross-validation was applied to determine the error rate for various grid
value combinations. The model with the lowest error rate (15%) consisting of 60 mMRNA but no
miRNA or CpGs. Applying Concatenation_sPLSDA to the test data resulted in an error rate of
18%.

e Concatenation_enet: All multi-omics data (MRNA, miRNA and CpGs) were concatenated into
one matrix. A grid of lambda values (0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1)
was used to determine the optimal shrinkage value by applying a 5x5-fold cross-validation
using the glmnet R package (v2.0-13). An alpha value of 1 (LASSO penalty) was used to
determine a model with the least number of variables. The model with the lowest error rate
(14%) consisting of 38 mMRNA, 2 miRNA and 118 CpGs. Applying Concatenation_enet to the
test data resulted in an error rate of 20%.

e Ensemble_sPLSDA: The tune function in the mixOmics R-library (v6.3.0) was used with a grid
of keepX (variables to select on each components) = [2, 5, 10, 15, 20] over 3 components
(ncomp=3) and applied to each omics dataset (NMRNA, miRNA and CpGs) separately. A 5x5-
fold cross-valdiation was used to determine the error rate for each grid value combination for
each dataset separately. The model with the lowest error rates for the mRNA, miRNA and CpGs
biomarker panels consisted of 60 mRNA, 55 miRNA and 40 CpGs. The cross-validation
predictions for these models was combined using an average vote scheme and the resulting
error rate for the training data was computed (25%). Appling each model separately to its
corresponding data-type and averaging the predictions, resulting in an test error rate of 28%.

e Ensemble_enet: A grid of lambda values (0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09,
0.1) was used to determine the optimal shrinkage value by applying a 5x5-fold cross-validation
using the glmnet R package (v2.0-13). The model with the lowest error rates for the mRNA,
miRNA and CpGs biomarker panels consisted of 96 mRNA, 45 miRNA and 127 CpGs. The

10



11

cross-validation predictions for these models was combined using an average vote scheme and
the resulting error rate for the training data was computed (11%). Appling each model
separately to its corresponding data-type and averaging the predictions, resulting in an test error
rate of 23%.

Section S6: Modular analysis

Eigengene summarization is a common approach to decompose a n x p dataset (where n is the
number of samples and p is the number of variables in a module), to a component (linear
combination of all p variables) that represents the summarized expression of genes in the module
(Langfelder and Horvath, 2008). For the asthma study, 15,683 genes were reduced to 229 KEGG
pathways and 292 metabolites were reduced to 60 metabolic pathways using eigengene
summarization.

Section S7: Multilevel transformation

For multivariate analyses, A multilevel approach separates the within subject variation matrix (Xw)
and the between subject variation (Xp) for a given dataset (X) (Westerhuis et al., 2010; Liquet et
al., 2012), ie. X = Xw + Xb. In the case of a two-repeated measured problem (e.g. pre vs post
challenge), the within subject variation matrix is similar to calculating the net difference for each
individual between the data obtained for pre and post challenge. For each omics dataset, the within-
subject variation matrix (Xw) was extracted and used to construct the multilevel DIABLO
(mDIABLO) models. In the asthma study, the multilevel approach (called variance decomposition
step) was applied to the cell-type, gene and metabolite module datasets.

11
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Figure S1. Overview of approaches used for the integration of multiple high dimensional omics
datasets using either unsupervised or supervised analyses.

Most integrative methods were developed for unsupervised analyses. Variable selection is an
important feature of the methods to improve interpretation of these complex models. Various types
of integrative methods are listed, ranging from Component-based that reduce the dimensionality
of high-throughput omics datasets, Bayesian methods, Network-based and multi-step approaches
which include concatenation and ensemble approaches (Huang et al., 2017). Concatenation-based
approach combine multiple matrices and apply standard single omics analysis without taking into
account the type of omics variable in the model. Ensemble-based approaches involve the
development of independent models for each omics dataset, after which the outputs are combined
using various voting schemes (e.g. majority vote, average vote). Methods name in courier font
indicate the name of the R package. “Methods are coded in other languages are indicated below.

Abbreviations: JIVE: Joint and Individual Variation Explained (Lock et al., 2013), "sMBPLS: sparse Multiblock
Partial Least Squares (Matlab)(Zhang et al., 2012), SNMNMF: Sparse Network-regularized Multiple Non-negative
Matrix Factorization (Matlab)(Zhang et al., 2011), MOFA: Multi-Omics Factor Analysis(Argelaguet et al., 2017),
*CONEXIC: Copy Number and Expression In Cancer (Java)(An Integrated Approach to Uncover Drivers of Cancer:
Cell), WGCNA: Weighted Gene Co-expression Network Analysis(Langfelder and Horvath, 2008), SNF: Similarity
Network Fusion(Wang et al., 2014), PANDA: Passing Attributes between Networks for Data Assimilation(Glass et
al., 2013), BCC: Bayesian Consensus Clustering(Lock and Dunson, 2013), "RIMBANET: Reconstructing Integrative
Molecular Bayesian Networks (Perl)(zZhu et al., 2012); SPCA : sparse Principal Component Analysis(Shen and Huang,
2007); sGCCA: sparse generalized canonical correlation analysis (Tenenhaus et al., 2014); rGCCA: regularized
generalized canonical correlation analysis(Gonzalez et al., 2009); NMF: Non-Negative Factorization (Matlab); MFA:
Multiple Co-inertia Analysis (MCIA); Multiple Factor Analysis(Abdi et al., 2013); glmnet: Lasso and Elastic-Net
Regularized Generalized Linear Models(Zou and Hastie, 2005); SPLSDA: sparse Partial Least Squares Discriminant
Analysis(Lé Cao et al., 2011); stSVM Smoothed t-statistics Support Vector Machine(Cun and Frohlich, 2013);
GELnet: Generalized Elastic Net(Sokolov et al., 2016); “ATHENA: Analysis Tool for Heritable and Environmental
Network Associations (Perl)(Kim et al., 2013); SVM: Support Vector Machine; RF: Random Forest(Breiman, 2001);
GRridge: Adaptive group-regularized ridge regression(van de Wiel et al., 2016); “iBAG: integrative Bayesian
Analysis of Genomics (R and Shiny)(Wang et al., 2013)

12



13

A Noise=0.2 Noise=0.5 Noise=1 B varType M corDis [l corNonDis [l unCorDis il unCorNonDis
0.60 . : . ’ .
w 055 * 7 180+ Noise=0.2 ~ Noise=0.5 ~ Noise=1
= 80
§0507 ﬁ . - -- - *CI;J
8045 . O o 120 m
2 . 8 [e]
E 0.40 58 1]
220351 ° &3 60 o
BR 0.5 ------eroerroorre soroer oo e =
g E
E3 04 . : %é 180+, - -
-— -
oF 03 $ ? ****u §%120 g
0wz . —
ol P ke T 1
o -1
S8 08 -nonmemom oo o emoeioen oo Es
2 S5
S 04 o 8% 1801,
£ 03 o @ s 120 m
"o e b 22 ¢
60 N
o) ot =
%, %@ % S % % % G 9 o% %, % =3 O/.,o % %. o) / '%
G, & & N, e, G Y %, & % %, "‘%u
o @, Qe 7, 12,0, Y, X0, Yo Mg 0,0, % % %eo\e,
%, %y %, %, %y *’4% %y o %, ”o/ % %, %
Integrative Classifiers Integrative Classifiers

Figure S2. Trade-off between correlation and discrimination in DIABLO models.

A) Classification error rates (10-fold cross-validation averaged over 20 simulations). Dashed line
indicates a random performance (error rate = 50%). All methods perform similarly when the fold-
change (FC) was zero (first row). All methods performed similarly when the FC=2, that is, the
fold-change was greater than the noise and covariance levels. When FC=1, DIABLO_Full had a
higher error rate compared to the other methods for noise levels less than 1. B) At lower fold-
change levels, DIABLO_Full selected correlated variables (red and green), however, when the
fold-change was greater than the noise and covariance levels (FC=2), all methods selected all
predictive variables (red, blue).
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Figure S3. Trade-off between correlation and discrimination: comparison between one or two
components.

Contour plots depicting the error rate estimated using 10-fold cross-validation averaged over 20
simulations when the full or null design and retaining either 1 or 2 components. When 1 component
is retained, 60 variables were selected per component per dataset whereas when 2 components
were selected 30 variables were selected per component per dataset. Therefore all DIABLO
models consisted of 180 variables (60 variables per dataset). Increasing the covariance between
datasets significantly increased the error rate for a given fold-change (blue to red) for the
DIABLO_Full model (A) as compared to the DIABLO_Null model (B). The error rates between
the DIABLO_Full and DIABLO_Null models are more comparable when 2 components are

retained (C-D).
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Figure S4. Integrative prediction frameworks including multi-step approaches (concatenation,
ensemble) and DIABLO to identify multi-omics molecular signatures.

Concatenation-based integration combines multiple datasets into a single large dataset, with the
aim to predict a phenotype of interest. Ensemble-based classification methods construct a
predictive model on each individual dataset before combining the model predictions. None of these
approaches account or model relationships between datasets and thus limit our understanding of
molecular interactions at multiple functional levels. DIABLO simultaneously maximizes the
associations between datasets and a phenotype of interest to identify a correlated set of variables
of different omics-types that are also discriminatory. The prediction is based on each omics-
associated component derived from the model. All methods presented here are data-driven
approaches, which do not use any prior knowledge such as from curated biological databases (eg.
protein-protein interactions).
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Figure S5. Benchmark analyses: overlap between multi-omics biomarker panels.

Intersection plots of multi-omics biomarker panels identified using both supervised (gray) and
unsupervised (yellow) methods for the gbm, kidney and lung cancer datasets. For each method 2
components were retained, and 30 variables were selected for each dataset, resulting in 30 variables
X 2 components x 3 datasets = 180 variables per method. Although the first and second components
are orthogonal to each other, some variables were selected on both components. The set size
depicts the number of unique features and thus leads to the unequal set size depicted above. The
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largest overlap is often observed between the supervised methods, with the exception of
DIABLO_full (blue bar), which was more similar to unsupervised methods (orange bar).
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Figure S6. Benchmark analyses: Number of correlated variables at various correlation cut-offs.

A correlation matrix was computed using the variables select in the multi-omics biomarker panel
identified for each multi-omics cancer datasets. At various correlation coefficient cut-offs, the
number of features that were correlated with other features is depicted for panels identified using
both supervised and unsupervised methods. The unsupervised methods lead to a higher number of
connections (edges) irrespective of the correlation cut-off, as compared to the supervised methods,
with the exception of DIABLO _full.

18



19

a

@

3

2.

<
type
[& supervised
a unsupervised

=]

8 del

9 3 modae
3 3  — Concatenation

S - DIABLO_full

Z  -- DIABLO_null
-- Ensemble
-+ JIVE
‘- MOFA
— sGCCA

=

)

o

@

05 06 07 08 09 05 06 07 08 09 05 06 07 08 09 05 06 07 08 09
cor_cutoff

Figure S7. Benchmark analyses: network properties of multi-omics signatures.

We analysed each of the four multi-omics cancer datasets with component-based integrative
methods with variable selection. The network attributes, density, number of communities and
triads resulting from each molecular signature are represented. The unsupervised methods (yellow)
led to multi-omics signatures with a higher graph density, a greater number of triads and a lower
number of communities as compared to supervised methods (gray), with the exception of
DIABLO_full which simultaneously explained the correlation structure between multiple omic
datasets and a phenotypic response variable.
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Figure S8. Benchmark analyses: network connectivity of multi-omics signatures.

Networks of the multi-omics biomarker panels identified from each method are represented for a
Pearson’s correlation cut-off of |0.4]. The edge betweenness as computed to estimate the number
of modules (depicted by the gray circles).
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Figure S9. Benchmark analyses: sample plots for each multi-omics panel.
As expected, a strong separation between high and low survival groups can be observed for
supervised methods but not for unsupervised methods. The level of discrimination decreases when
using DIABLO_full as compared to DIABLO_null.
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Figure S10. Internal validation of high and low phenotypic groups for all method in the benchmarking
experiments.

The silhouette for each data i, was computed as the normalized difference between two average
distances (aiand bi), where ai is the average distance between i and all points within its own cluster
and bi is the average distance between i and all points that are not in its cluster (s(i) =

M). The silhouette ranges from -1 to 1, 1 being a strong indicator of cluster membership
max{a(i),b (i)}

and -1 being a weak indicator of cluster membership. As can be observed, the supervised methods
show stronger silhouette coefficients as compared to unsupervised methods. This is because the
principal components are associated with the phenotype of interest. DIABLO_Null consistently
out-performed the methods with a higher average silhouette coefficient with respect to both
phenotypic groups (high and low survival). The silhouette coefficients for the other methods were
variable, however, whether this translates to a lower predictive performance in independent test
data remains to be observed.
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Figure S11. A standard DIABLO workflow.

The first step inputs multiple omics datasets measured on the same individuals, that were
previously normalized and filtered, along with the phenotype information indicating the class
membership of each sample (two or more groups). Optional preprocessing steps include multilevel
transformation for repeated measures study designs and pathway module summary
transformations. DIABLO is a multivariate dimension reduction method that seeks for latent
components — linear combinations of variables from each omics dataset, that are maximally
correlated as specified by a design matrix (see Methods section). The identification of a multi-
omics panel is obtained with I penalties in the model that shrink the variable coefficients defining
the components to zero. Numerous visualizations are proposed to provide insights into the multi-
omics panel and guide the interpretation of the selected omics variables, including sample and
variable plots. Downstream analysis includes gene set enrichment analysis.
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Figure S12. Breast cancer multi omics study: optimal multi-omics biomarker panel for PAM50

subtypes.

A grid was used to identify the optimal combination of variables select from each omics datasets.

The following grid values was used for each omics dataset: mMRNA

= [5’

[5, 10, 15, 20], miRNA

10, 15, 20], CpGs =[5, 10, 15, 20], Proteins = [5, 10, 15, 20], across 3 components. The centroids
distance measure was used to compute the error rate (Rohart et al., 2017). The optimal multi-omics
panel consisted of 20 MRNAs, 20 miRNAs, 15 CpGs and 15 proteins on component 1, 5 mRNAs,

5 miRNAs, 5 CpGs and 20 proteins on component 2, and 20 mRNAs, 20 miRNAs, 5 CpGs and

20 proteins on component 3.
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Figure S13. Variable importance plots for the breast cancer multi-omics biomarker panel.

The variable importance based on the absolute value of the weights on the loading vectors were
plotted for each omic-type as part of the multi-omics biomarker panel predictive of PAMS50 breast
cancer subtypes identified using DIABLO_full. Each variable is color-code based on its existence
in databases that associate variables with breast cancer. Variables in black have no known
associations in curated biological datasets with respect to breast cancer.
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Figure S14. Omic-specific component plots.

Component plots for each omic dataset depicting the clustering of subjects with respect to the
PAMS50 subtypes. The 95% confidence ellipses are based on the training model and superimposed
with test data.
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Figure S15. Heatmap of scaled expression of the variables identified in the multi-omics biomarker
panels.

The expression values of all variables that were part of the multi-omics biomarker panel identified
to be predictive of PAM50 breast cancer subtypes were scaled and underwent hierarchical
clustering. As can be observed samples with the Her2 and Basal subtypes cluser strongly whereas
LumA and LumB are much harder to separate from each other.
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Figure S16. Significant pathways enriched in the largest community identified using the features of

multi-omics biomarker panel for PAMS50 subtypes.

The largest cluster (in Figure 3B) consisted of 72 variables; 20 mMRNAs, 21 miRNAs, 15 CpGs
and 16 proteins (red bubble) and was further investigated using gene set enrichment analysis. The
barchart depicts the enriched genesets at an FDR cut-off of 5%.
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Figure S17. Overlap between biomarker panels identified using DIABLO and multilevel DIABLO.
The intersection (overlap) between variables selected by applying mDIABLO and the standard
DIABLO model. Only mDIABLO identified variables that spanned different biological domains
(red).
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Figure S18. Heatmap depicting the correlation matrix of the variables identified using multilevel

DIABLO (mDIABLO).

The correlation matrix computed based on the features selected by mDIABLO depicts strong

groups of highly correlated features.
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Figure S19. Asthma multi-omics study: volcano plot of genes in the Asthma KEGG pathway.
The volcano plot depicts the significance of each gene in the asthma pathways against its respective
fold-change (change in expression from pre to-post challenge). The significance is based on a
paired t-test. The volcano plot shows that with the exception of HLA-DPB1 and CD40 no other
genes within the Asthma pathway were significant at the nominal p-value cut-off of 0.05.
However, this pathway was selected by DIABLO as a strong predictor of allergen challenge. This
modular-based analysis depicts the power of combining genes with small effect sizes which
together contribute to a pathway that significantly changes in response to allergen inhalation

challenge.
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Figure S20. Circos plot depicting the strongest correlation biomarkers in the multi-omics biomarker
panel.

The variables selected by applying mDIABLO to cellular frequencies, gene and metabolite module
datasets are depicted using a circos plot. The variables are indicated in the ideogram and connected
with either red or blue to other variables if the correlation is either positive or negative. Only
correlation above a certain threshold are depicted (r=0.8). The lines around the ideogram are drawn
by connecting the average expression value of a given variable for a certain phenotypic group.
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Table S1. Number of significant gene sets for each integrative method and benchmarking cancer
dataset.
Best performing method is indicated in the shaded cell. Each row represents a gene set collection

Ssee Sueel. Section S4 for details, FDR = 5%2.

Unsupervised, Supervised, non-integrative Supervised,
integrative integrative
disease collection JIVE MOFA | sGCCA Concatenation Ensemble DIABLO_null DIABLO_full
BTM 0 4 0 0 0 0 23
Cil 0 0 0 0 0 0 0
C2 15 14 5 12 3 21 113
C3 8 5 14 11 2 6 0
Colon | Cc4 0 1 0 1 2 1 46
C5 19 36 147 7 0 0 216
C6 0 0 0 0 0 0 0
C7 1 87 11 61 10 62 218
H 0 0 0 0 0 2 7
TISSUE |2 12 0 0 0 0 16
S
TOTAL |45 159 | 177 92 17 92 639
BTM 0 0 19 10 9 10 30
Cil 0 0 0 0 0 0 0
C2 275 | 337 |193 258 358 312 426
C3 94 64 37 14 15 15 34
Gbm | c4 49 143 |68 47 50 62 125
C5 825 | 708 | 706 526 669 776 693
C6 22 25 18 30 24 24 21
C7 460 | 82 526 432 173 147 869
H 12 8 8 19 23 20 19
TISSUE | 18 29 21 10 12 14 44
S
TOTAL | 1755 | 1296 | 1596 | 1346 1333 1380 2261
BTM 1 0 0 0 0 0 0
C1 0 0 1 0 0 0 1
C2 42 33 7 10 5 15 4
C3 8 80 1 4 35 23 1
Kidne | c4 17 |6 0 7 1 3 0
y C5 157 | 110 |1 55 27 46 0
C6 0 0 0 0 0 0 0
C7 0 74 15 93 13 10 18
H 6 3 0 1 0 1 0
TISSUE |2 0 0 0 0 0 0
S
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Lung

TOTAL |[233 | 306 |25 170 81 98 24
BTM 0 0 0 0 0 2 0
Cl 0 0 0 1 0 0 1
C2 4 17 2 0 0 1 33
C3 48 20 57 50 26 21 19
C4 17 0 47 0 0 18 13
C5 35 127 | 42 0 25 22 193
Co6 1 0 1 3 2 5 7
C7 18 13 78 0 7 72 100
H 0 2 0 0 1 0 0
TISSUE |0 0 0 0 0 9 20
S

TOTAL | 123 |1/9 | 227 54 61 150 386
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Table S2. Classification error rates (average error, sd) of DIABLO, Concatenation-based and

35

Ensemble-based sPLSDA and Elastic Net (enet) classifiers on the Breast Cancer study (see Suppl.

Section S5 for details).

Dataset _______|p ____________|Train________|Test

Diablo_null

mRNA: 60
mMiRNA: 42
CpGs: 22

0.21 (0.0091)

0.19

Diablo_full

mRNA: 55
miRNA: 17
CpGs: 17

0.22 (0.0057)

0.21

Concatenation_sPLSDA

mMRNA: 60
miRNA: 0
CpGs: 0

0.15 (0.013)

0.18

Concatenation_enet

MRNA: 38
miRNA: 2
CpGs: 118

0.14 (0.0072)

0.20

Ensemble_sPLSDA

MRNA: 60
miRNA: 55
CpGs: 40

0.25 (0.014)

0.28

Ensemble_enet

MRNA: 96
miRNA: 45
CpGs: 127

0.11 (0.0016)

0.23
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